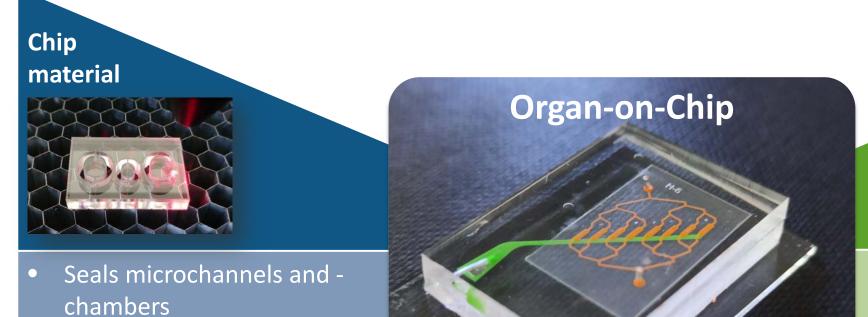
Session: Biomaterials and 3D printing

Chair: Prof. Dr. Peter Loskill

Professor for Organ-on-Chip Research

- μOrgano-Lab, Department of Biomedical Sciences, Faculty of Medicine, Eberhard Karls University Tübingen
- 3R-Center Tübingen for In Vitro Models and Alternatives to Animal Testing



PSIS workshop – Organ on Chip April 29th, 2021

Biomaterials – Different types \Leftrightarrow different requirements

Provides housing for the \diamond tissues

ECM

substitute

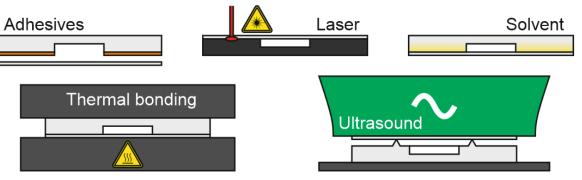
- Integral part of tissues and organs
- Provides 3D environment and anchor points for cells

Biomaterials – Chip material

- Key requirements
- Long-term stability, sterilizable
- No interference with the tissue/assay function (biocompatible, inert, low absorption)
- Optical transparency
- > Applicable for rapid prototyping/microfabrication
- > (Economical) manufacturability
- Various types of materials in use, e.g.
- Elastomers (e.g. PDMS)
- Thermoplastics (PMMA, PS, PET, ...)
- Glass
- Hybrid combinations

			/	1	/2	5	/	/	/
		15	ONS	There	oplas	31855	HCOR RS	25ins Pr	sper the
	/	$\langle \rangle$	00	There	oplasti	15	1	$\langle \rangle$	1M
Low Cost	1	6	6	6	6	6	6		6
Ease of Fabrication									
Robust mechanical properties									
Ease of Sterilization									
Flexibility									
Oxygen permeability									
Biocompatibility									
Potential for chemical modification									
Low environmental footprint									
Tunable mechanical properties									
Optical clarity	Δ	Δ							
Smallest channel dimension [†]									
Low absorption									
Rapid Prototyping									
Tunable Fluorescence									
Inhibits leaching									
Potential for cell ingrowth									
	Δ - S	light /	Autof	uores	ence				

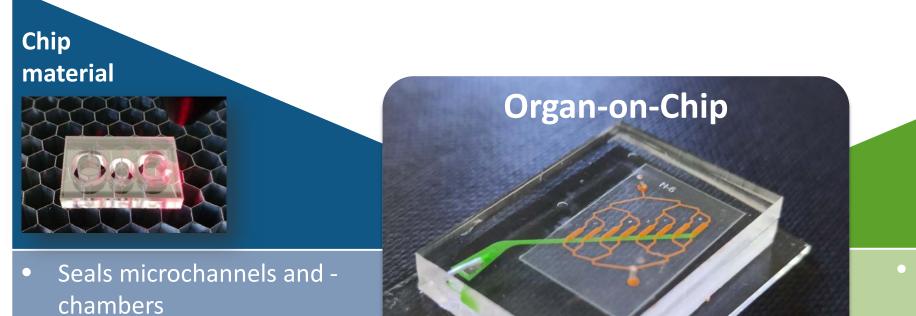
Δ - Slight Autofluoresence


[†] - Green: <100 nm; Yellow: < 1 μm; Red > 1 μm

Campbell et al. ACS Biomater. Sci. Eng. (2021)

Biomaterials – Chip material

- Key requirements
- Long-term stability, sterilizable
- No interference with the tissue/assay function (biocompatible, inert, low absorption)
- > Optical transparency
- > Applicable for rapid prototyping/microfabrication
- > (Economical) manufacturability
- Various types of materials in use, e.g.
- Elastomers (e.g. PDMS)
- Thermoplastics (PMMA, PS, PET, ...)
- > Glass
- Hybrid combinations


Structured and bonded via different fabrication approaches (e.g. lithography, injection molding mechanical/laser structuring, hot embossing, 3D printing, thermal bonding ...)

Schneider et al. Lab Chip. (2021)

Large potential for standardization (closely connected to the "microfluidics" topic)

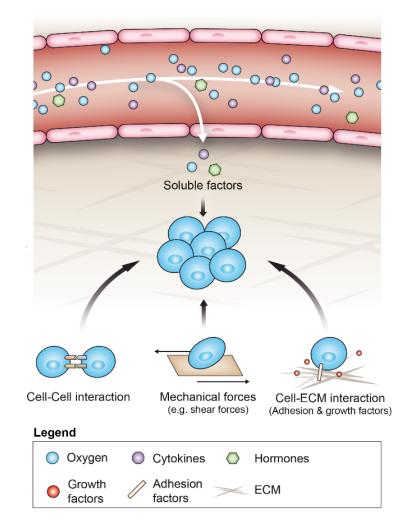
Biomaterials – Different types \Leftrightarrow different requirements

Provides 3D environment and anchor points for cells

Integral part of tissues and

ECM

substitute


organs

Provides housing for the tissues

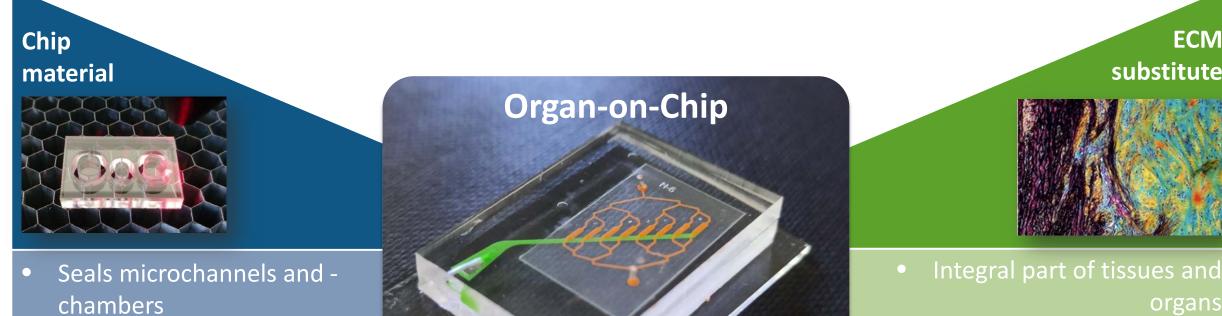
Biomaterials – ECM substitute

- Defines the cellular microenvironment and provides mechanical and biochemical cues
- Large diversity of materials with distinct advantages and limitations
 - Due to tissue-specificity and complexity of in vivo ECM

Cellular Microenvironment

Biomaterials – ECM substitute

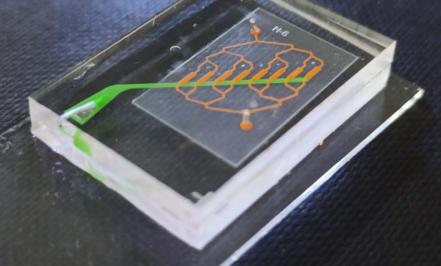
Natural biomaterials	Strengths	Weaknesses	OOC models
Collagen	 Biocompatible Low antigenicity/immunogenicity Degraded enzymatically Contains cell adhesive domains Can be formed into specific geometries Major component of native ECM Cells able to remodel and contract gel matrix Culture media, proteins, and growth factors can be transported across collagen gel Orientation of collagen fibers can be achieved Cells can penetrate, remodel, and contract gel matrix 	 Chemical crosslinking used for increased stability Without mechanical support, collagen-based cell models remain intact for short time 	 Cardiac Hepatic Vascular Skeletal muscle Kidney Neuronal networks Tumor spheroids Microvessels Cancer cell migration
Fibrin	 Biocompatible Noninflammatory Biodegradable Gel formation at room temperature through enzymatic polymerization of fibrinogen by thrombin Bioadhesive properties Delivery of proteins and growth factors 	Weak mechanical properties	 Skeletal muscle Vascularized human tissue Fibrin clot formation in lung model
НА	 Biocompatible Natural ECM component Structural component of tissue and joints Degradable with hyaluronidase Tunable elastic modulus capability 	Weak mechanical properties	Cancer metastasisBarrier tissue
Chitosan	 Biocompatible Biodegradable Similar in structure to glycosaminoglycans Flexible and porous Minimal foreign-body response 	 Mechanical weakness Instability 	• Vascular
Aginate	 Biocompatible Degradable Immediate gelation upon exposure to divalent cations Use as sacrificial material and gel dissolves culture medium 	 Uncontrollable degradation Limited protein adsorption Lack of cell binding 	 Cardiac Tumor spheroids Hepatocyte spheroids Liver, tumor, marrow
Gelatin	 Biocompatible Biodegradable Similar in composition to collagen Contains cell adhesion sites Less antigenic than collagen Tunable and physiologically relevant elastic modulus 	Chemical crosslinking for stability	 Cardiac, vascular Muscle
Synthetic biomaterials	 Tunable mechanical propertieS Tunable degradation properties Less batch-to-batch variability than natural biomaterials Chemical modification to incorporate bioactive molecules Polyesters degraded through hydrolysis Moldable 	 Lack of cell adhesion ligands prior to modification Degradation products could have cytotoxic effects Immune response must be evaluated 	CardiacHepatic


Biomaterials – ECM substitute

- Defines the cellular microenvironment and provides mechanical and biochemical cues
- Large diversity of materials with distinct advantages and limitations
 - Due to tissue-specificity and complexity of in vivo ECM
- Natural (e.g. animal- or plant-derived) or synthetic biomaterials
- Different processing approaches to generate various types scaffolds
 - Hydrogels (bulk injection, in-chip patterning, bioprinting)
 - (Freeze-)Dried membranes
 - Decellularized scaffolds
 - Electrospun scaffolds

How to bring together in vivo diversity/complexity and standardization?

Biomaterials – Different types \Leftrightarrow different requirements


Provides 3D environment and anchor points for cells

ECM

substitute

organs

- Provides housing for the
 - tissues

